

Total No. of printed pages = 8

Sc-202/Maths-II/2nd Sem(New)/2018/J/A

MATHEMATICS – II

(New Course)

Full Marks – 70

Time – Three hours

The figures in the margin indicate full marks for the questions.

PART - A

Marks – 25

1. Find the correct answer : $1 \times 10 = 10$

(i) Radius of the circle $x^2+y^2-6x+2y+1=0$ is

(ii) Equation to the normal to the circle $x^2 + y^2 = 9$ at $(3, 0)$ is

(a) $y = 2$ (b) $y = 0$
(c) $x = 0$ (d) $x = 1$

[Turn over

(iii) Minor axis of the ellipse $x^2 + 9y^2 = 144$ is

(a) 5 (b) 3
(c) 8 (d) 9

(iv) Focus of the parabola $y^2 = 12x$ is

(a) (4, 0) (b) (-3, 0)
 (c) (3, 0) (d) (0, -3)

(v) Direction ratios of the line joining $(2, 3, -1)$ and $(0, 4, 1)$ are

(a) 2, 1, 6
 (b) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
 (c) 4, 2, 1
 (d) 2, -1, -2

(vi) Angle between the lines with direction ratios
 $-1, 2, 3$ and $5, 1, 1$ is

(a) 45° (b) 60°
 (c) 90° (d) 30°

(vii) Distance between $(2, 1, 0)$ and $(0, -1, 1)$ is

(viii) Cross product of $2\hat{i} + \hat{j} - 4\hat{k}$ and $5\hat{i} - 2\hat{j} + \hat{k}$ is

(a) $\hat{i} + 3\hat{j} + 5\hat{k}$ (b) $6\hat{i} + 11\hat{j} + 2\hat{k}$
 (c) $\hat{i} + \hat{j} - 2\hat{k}$ (d) $-7\hat{i} - 22\hat{j} - 9\hat{k}$

(ix) Dot product of $4\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 2\hat{j} + 9\hat{k}$ is

(x) If $\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} - 2\hat{j} - \hat{k}$ then
 $|\vec{a} - \vec{b}|$ is

2. Fill in the blanks : $1 \times 10 = 10$

(i) Domain of the real valued function

$$f(x) = \frac{3}{x-1} \text{ is } \underline{\hspace{2cm}}$$

(ii) Domain of the real valued function

$$f(x) = \sqrt{x^2 - 9} \text{ is } \underline{\hspace{2cm}}$$

(iii) Value of $\lim_{x \rightarrow 0} \frac{\sin^2 4x}{x}$ is $\underline{\hspace{2cm}}$.

(iv) Value of $\lim_{x \rightarrow \infty} \frac{1}{x^3 - 1}$ is $\underline{\hspace{2cm}}$.

(v) Value of $\lim_{x \rightarrow 2} \frac{x^2 - 3x + 2}{x^2 - 4}$ is $\underline{\hspace{2cm}}$.

(vi) Derivative of $y = 5x - 2$ with respect to x
is $\underline{\hspace{2cm}}$.

(vii) Derivative of $y = e^{4x}$ with respect to x is
 $\underline{\hspace{2cm}}$.

(viii) Derivative of $y = \log x^4$ with respect to x
is $\underline{\hspace{2cm}}$.

(ix) Second order derivative of $s=t^3+5 \cos t + 4$
at $t = 0$ is _____.

(x) Second order derivative of $y = \tan^{-1} 2x$ at
 $x = 1$ is _____.

3. Write true or false : $1 \times 5 = 5$

(i) $\int \sin x \, dx = \cos x$

(ii) $\int 4x^3 \, dx = x^4$

(iii) $\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \sin^{-1} \frac{x}{a}$

(iv) $\int 2 \sin 2x \, dx = -\cos 2x$

(v) Area bounded by the parabola $y^2 = 4x$ and
its latus rectum is $\frac{3}{8}$.

PART – B

Marks – 45

4. Write center and diameter of the circle $x^2 + y^2 + 8x + 2y + 13 = 0$. 2

5. Answer any *three* :

$3 \times 3 = 9$

(i) Find the equation of the circle having centre $(2, 1)$ and which passes through $(0, 0)$. Find its radius.

(ii) Trace the parabola $x^2 = 5y$.

(iii) Find the equation to the tangent to the ellipse $9x^2 + 4y^2 = 25$ at $(-1, -2)$.

(iv) Find unit vector perpendicular to $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\vec{b} = 4\hat{i} - 5\hat{j} + \hat{k}$.

(v) Find the projection of the line joining $(-2, 3, -1)$ and $(3, 4, 3)$ on the line joining the points $(3, 5, 2)$ and $(5, 3, 3)$.

6. (a) Find limit (any *two*) :

$5 \times 2 = 10$

$$(i) \lim_{x \rightarrow 0} \frac{\sin 4x}{\sin 3x}$$

$$(ii) \lim_{x \rightarrow \infty} \frac{2x^3 - 1}{2x^3 + 5x^2 + 1}$$

$$(iii) \lim_{h \rightarrow 0} \frac{\cos(x+h) - \cos x}{h}$$

$$(iv) \lim_{x \rightarrow 0} \frac{e^{2x} - e^{3x}}{x}$$

(b) Find $\frac{dy}{dx}$ (any three) : 3×3=9

$$(i) y = 3x^5 + \sqrt{x}$$

$$(ii) y = \sqrt{(x-1)^3 + 2}$$

$$(iii) y = \log \tan x$$

$$(iv) x = \sin^2 \theta, y = \tan \theta$$

$$(v) x^y y^x = 1$$

7. Find $\frac{a^2 y}{ax^2}$ of $y = \tan^{-1} 2x$ 3

8. Find maximum and minimum value of $y = \sin x$. 3

9. Evaluate (any *three*) :

2×3=6

$$(i) \int \frac{2}{x^3} dx$$

$$(ii) \int (x^2 + e^x - \sin 4x) dx$$

$$(iii) \int \frac{e^x dx}{e^{2x} + 1}$$

$$(iv) \int \frac{dx}{9+x^2}$$

$$(v) \int \sin 2x \cos 3x dx$$

$$(vi) \int_0^{10} e^{2x} dx$$

10. Find area bounded by $y = 2x^3$, $x = 3$ and x-axis.

3